
Research Article

Transportation Research Record
1–15
� National Academy of Sciences:
Transportation Research Board 2020
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/0361198120980437
journals.sagepub.com/home/trr

User Activity and Trip Recognition using
Spatial Positioning System Data by
Integrating the Geohash and GIS
Approaches

Hafez Irshaid1, Md Mehedi Hasan2, Raed Hasan3, and Jun-Seok Oh4

Abstract
Analyzing travel behavior in transportation networks within a city is significant to understand the user’s activity and travel pat-
tern in relation to making improved city plans for the future. Unlike the traditional travel diary survey, GPS data have helped
researchers to analyze Big Data with enriched travel information in an automated way. The focus of this research was to iden-
tify user activity and travel pattern from GPS data logs. We proposed three different approaches, including Geohash cluster-
ing, the GIS-based approach, and Combined Geohash–GIS approach, for automatic user activity and trip recognition in a
continuous and aggregate manner. We developed different individual models considering different dwell times for the above
three approaches. We considered three different testing scenarios based on specified tolerance levels, including simple, mod-
erate, and critical testing to identify trip only, activity only, and sequential activity–trip analysis. In comparison with other
approaches, the Combined Geohash–GIS approach considering 5 min dwell time accurately classified data with about 95%
accuracy. The proposed Combined Geohash–GIS approach could significantly enhance the efficiency and accuracy of GPS
travel surveys by correctly recognizing user activity and trip patterns. This proposed combined approach could serve as a
foundation for a future model system of full-scale travel information identification with GPS data.

Travel data related to transportation users’ activity and
trip information help in promoting transportation plans,
projects, and policies in urban areas (1). The activity data
are typically concerned with user behavior associated
with the built-up environment of cities. The data help in
detecting the movements along with the travel patterns
of persons, goods, and information in a given or possible
future environment (2, 3). In recent years, smart cities
have been characterized by their reliance on big and con-
tinuous user activity data. Recent advances in artificial
intelligence and communication technologies are capable
of collecting big travel data based on ubiquitous and
location-aware smartphones (1, 4–6).

An individual’s travel itinerary comprises a sequence
of different activities and trips for a given time period
(3). An activity could be defined as an event that occurs
for a certain amount of time within the same socio-
spatial environment, whereas a trip is defined as the
movement of persons, goods, or information between
different spatial–temporal environments (2). Activities
are characterized based on the potential purposes of an
individual’s daily lifestyle (i.e., work activity, shopping

activity, etc.). On the other hand, trips are the connecting
events or the continuous sequence of stages between dif-
ferent activities by using different transportation modes.
Activity and trip recognition of the travel itinerary is an
important step for transport modeling and predicting
travel behavior (2, 7).

Over the last two decades, different methods and
approaches have been practiced for predicting travel
behavior and recognizing user activity and trip informa-
tion. Some of the traditional methods used in previous
studies include paper-based face-to-face interviews, activ-
ity/travel diaries, mail-back paper surveys, and so forth
(8, 9). However, those traditional surveys were limited in
relation to short-term report-based study, including other
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shortcomings such as trip under-reporting time inaccura-
cies, labor-intensive procedure, origin–destination loca-
tion errors, and information bias resulting from
subjective judgment and fatigue/forgetfulness (1, 10, 11).
To overcome the above limitations, traditional paper-
based surveys were replaced by online and computer-
assisted programs, such as computer-assisted telephone
interviews, computer-assisted self-interviews, web-based
and internet surveys, and so forth (12–14). Although
internet-based travel surveys are capable of saving time
and money by incorporating automatic branching in
questionnaires, this approach suffers from different
shortcomings, such as sampling bias and representative-
ness of sample size, lower response rates, non-response
and misreporting, and so forth (8, 15, 16).

In recent years, traditional transportation user data
collection approaches have been replaced by automatic
and digital methods following recent advances in infor-
mation and communication technologies (ICT) (6, 17,
18). Global Positioning System (GPS) data logs are used
for tracing human activity data through location sensors
(19). To date, most people have used their smartphones,
which were embedded with GPS systems that collect
location points. GPS surveys are considered as a poten-
tial alternative to traditional surveys because of the accu-
racy in collecting spatiotemporal travel datasets along
with the data validation approach by using in-app or
prompted-recall applications (20–24). These opportuni-
ties, features, and collection of location data through
GPS techniques and smartphone devices have prompted
researchers to build different approaches that monitor
activities through travel pattern analysis, such as rule-
based algorithms, statistical methods, and machine learn-
ing methods (19, 25). Rule-based algorithms were used in
a variety of studies to detect the travel activity and trip
pattern from spatial–temporal GPS datasets (26–28). For
example, Bohte and Maat conducted a GPS-based travel
survey to recognize the activity pattern through applying
a rule-based algorithm by using different attributes, such
as Geographic Information System (GIS) land-use data,
home and workplace/school addresses, and so forth (28).
In addition, different machine learning models were
applied to detect activity and trip information from the
GPS trajectory dataset, such as random forest (RF) (29–
31), decision tree (32, 33), neural networks (21), long
short-term memory (34), and so forth. For example, Wu
et al. performed a GPS-based study to automatically
detect the user activity types through applying the RF
model by using distance, speed, and acceleration datasets
(29). Pereira et al. conducted a study to recognize user
activity and trip pattern by applying the historical data-
matching rules approach with the help of the GPS trajec-
tories dataset along with user activity duration, point of
interests, socio-demographics, and work hours’ travel

time data (35). In another study, Zhang et al. performed
a GPS-based survey to recognize user activity through
applying the sequential model-based clustering method
by using visiting frequency, most frequently visited loca-
tions, distance between visited locations, and the relation
between a location and its surrounding environment
(36). In addition to GPS trajectories, the Light Detection
and Ranging (LiDAR) dataset was used to predict traffic
flow and user activities by analyzing real-time spatial–
temporal information (37).

In addition, giant software companies in computer
fields and other digital mapping companies have also
created numerous location-based service applications by
using Foursquare or Google Maps to understand trans-
portation activity/travel patterns in real time (1, 38, 39).
Furthermore, many applications have been applied for
detecting spatial patterns of user travel activities through
mapping techniques resulting from spatial positioning
systems and locational data analysis (40–43). The GIS is
one of the critical methods related to travel pattern beha-
vior and transport modeling purposes, and analyzes the
spatial relationship of transportation users (44, 45). For
example, Stenneth et al. explained the possibilities of
determining transportation activities provided through
GIS maps with GPS data by identifying speed and accel-
eration data (46). Domènech et al. developed a metho-
dology to assess the effectiveness and spatial coverage of
travel patterns in Spanish tourist cities through the GIS
system (47). Also, Loidl et al. attempted to develop a
relationship between activity and travel pattern through
the GIS approach by applying geospatial data with geo-
visualization (48). In recent times, the Geohash tech-
nique was used in different sectors including spatial mod-
eling studies for business (49), mobile sensing (50),
spatial query (51), and spatiotemporal mapping (52).
The Geohash method was used in the study of Singh
et al. for the purpose of investigating the flow orientation
of major activity regions in South Korea (53). In addi-
tion, the Geohash method was used in the study of Oh
et al. (54), which is close to the idea of Singh’s research,
to assess spatial movement patterns of smart card trans-
action data for multi-modal transportation networks.
However, to date, the Geohash method has not been
used for detecting travel behavior data, especially for
recognizing activity or trip information (55).

Research in travel surveys and recognizing activity
patterns has come along a long way, and gained maturity
in relation to different approaches and methodologies.
However, the current methods suffer from different lim-
itations, such as information bias, inconsistent datasets,
sources of the data feed, small-scale datasets, labor-
intensive characteristics, and so forth. Moreover, efforts
have concentrated on one aspect of travel data detection
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(i.e., mode detection) at a time, rather than recognizing
sequential activities and trips from a travel itinerary.

Therefore, this study aims to recognize the activity
and trip with different thresholds of spatiotemporal
change by applying the Geohash clustering approach and
the GIS-based approach, forming a combined approach
by integrating the Geohash and GIS systems. The above
approaches were developed and implemented for activity
only, trip only, and sequential activity–trip recognition
with GPS data as a case study for the city of Kalamazoo,
Michigan.

Data and Methodology

In this section, we discuss the major methods of data col-
lection and the approaches that were applied in this
study to recognize activity/trip information. The study
area of this paper was chosen for the city of Kalamazoo,
Michigan, which has an integrated urban land-use pat-
tern and spatial variation in its transportation network.

Data Collection

This research considered data from the Transportation
Research Center for Livable Communities’ (TRCLC)
Fitbit project. A comprehensive dataset for more than 60
users’ daily activities for a 12-month period, ranging
from January to December of 2018, was considered. The
study took advantage of GPS survey data collected by
smartphone application. Each respondent had an aver-
age of about 100,000 records for the 12-month study
period. With missing values being eliminated from the
records, the final sample consisted of nearly 10 million
GPS records. Each record in the dataset represented a
GPS signal captured by the Android GPS device and
contains information on index, date and time (ET), lati-
tude, longitude, altitude (m), speed (m/h), distance (m),
and satellite information. We used GPS accuracy of 100
for user trip/activity recognition.

We developed an Android application using the Ionic
2 framework for the data collection process. The mobile
application consisted of three parts: (1) GPS capturing
process, (2) login and user authentication process, and
(3) data verification process. GPS points were captured
at every 1 s interval, and were stored in the database ser-
ver for processing the data. Each GPS point (latitude and
longitude) was stored along with the timestamp on when
the point was captured for the associated user ID. Users
received a notification once the server processed the data.
After that, each user was asked to authenticate their data
by verifying every activity and trip during the day, and
the verified data were saved into the server.

Data Processing

The whole process required the advancement of an inte-
grated work system consisting of four major components
including development of mobile application to collect
GPS data, maintenance of back-end server, database
management, and classifier system development.

An activity/trip classifier was developed to classify dif-
ferent user activities and trips from raw GPS points. An
activity/trip classifier was also designed to process the
raw data in the database and extract the knowledge from
the raw data. This classifier used GPS points and con-
verted them into activity/trip segments by applying spe-
cific methods (e.g., GIS-based approach, Geohash
approach, and Combined GIS and Geohash approach).
The algorithm defined an activity/trip by validating the
duration of a trip/activity in comparison with the dwell-
ing time.

In relation to dwell time selection, most research has
used a specific dwell time for separating activity and trips
by utilizing it as a minimum duration for activities (56).
Different thresholds were used by different researchers
depending on the available GPS signal, such as more
than 120 s (57, 58), more than 180 s (28), more than 200 s
(42) or more than 300 s (59). The threshold varies mainly
depending on the characteristics of local activities (56).

For this study, dwelling time was defined as the mini-
mum duration that the participant spent in a specific
place, for example, visiting the supermarket for at least
the value of the dwelling time. The dwelling time varies
based on different variables, for example, socio-demo-
graphics, journey patterns, built-up environment factors,
and so forth, for various activities including work, daily
shopping, general daily activities, and sport/recreational
activities (57, 60, 61). To determine the optimal dwell
time for our study, we tested the pilot travel data based
on a range of 1–15 min as the threshold time. The pilot
data were collected from a sample group of 12 partici-
pants for the time period of 3 months, from October to
December 2017. For the pilot study, we selected a differ-
ent set of participants to incorporate the variation in
their daily travel trajectories. We captured their GPS
data and the model was set to predict the activity and
trip events in a continuous manner. We observed their
daily GPS trajectories and manually validated those
against the model output. The model accuracy was tested
for all of the considered thresholds of dwell time ranging
from 1 to 15 min. After that, the threshold for dwelling
time was selected for 5, 8, and 10 min based on the obser-
vation and accuracy of the pilot data that were gathered
from the team members. In this study, if the duration
was higher than the dwelling time in any particular place
or boundary, it was defined as activity; otherwise, it was
defined as trip. The dwelling time was considered only
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for activities; meaning, if the user drove for less than 5
min, the classifier identified this as a trip. The executive
trips were merged into one trip from the source and the
destination. After finding those segments, the activity
was determined and verified by Foursquare API that
returns the location types. Afterward, the classifier stored
this information in the database and the user was noti-
fied to validate the output of the classifiers. We also eval-
uated the activity and trip recognition analysis regardless
of the activity and trip types.

The detailed process of this study is shown in Figure 1
as a schematic diagram. The database contained data for
user management along with storing user data, for exam-
ple, user ID, registration code, socio-demographic pro-
file, and so forth. The mobile application data stored
location information, such as latitude, longitude, time
captured, speed, and so forth. The MySQL database was
used to store and combine the data and was hosted by
the Google Cloud platform. After retrieving data from
the database, it was smoothed and interpolated to fulfill
the missing points because of the limitations of the
mobile phone. The interpolation was performed for those
segments that had a lot of missing data. These missing
data were indemnified by measuring the distance between
every two consecutive points; for example, if the distance
was more than 1 mi, it was considered as a missing point.
The Kalman Filter was applied to smooth and to inter-
polate the GPS data error and enhance the accuracy.

Methodology

In this research, we developed three different approaches
to recognize user activity/trip from GPS data logs,
including the Geohash clustering approach, the GIS-
based approach, and the Combined Geohash–GIS
Approach. For all of the approaches, we developed dif-
ferent models based on dwelling times of 5 min, 8 min,
and 10 min, as described earlier in this section.

Geohash Clustering Approach. Geohash is a public domain
geocoding system that encodes a geographic location
into a short string of letters and digits (62). It maintains
a hierarchical spatial data structure that subdivides space
into buckets of grid shapes by using latitude and longi-
tude points (53). In this research, we clustered the GPS
points based on the Geohash approach. To cluster the
adjacent GPS points, all points during a day were hashed
using a Geohash algorithm. Increasing the number of
Geohash string characters (precision) increased the
neighboring points that incorporated themselves in the
same cluster. Based on the geographic extent of our
users’ available data, we tested 5, 6, and 7-character pre-
cision at a spatial resolution level to cluster the adjacent
points. Therefore, the analysis level of each cluster was
considered for 4.9 km 3 4.9 km area for 5-character
precision, 1.22 km 3 0.61 km area for 6-character preci-
sion, and 152.9 m 3 152.3 m area for 7-character

Figure 1. Schematic diagram of the study.
Note: GIS = geographic information system.
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precision, where all GPS points located in this area were
treated as a single Geohash cluster. Figure 2 shows an exam-
ple of the Geohash clustering technique where different data
were used including latitude, longitude, time, and activity
type. The latitude and longitude points were converted and
hashed into the Geohash format using a specific Geohash
length. After, the clustering technique aggregated all similar
points that had the same Geohash and added them to a clus-
ter labeled by the Geohash string. Subsequently, the duration
was calculated by subtracting the start and the end times of
the corresponding trip/activity.

GIS-Based Approach. For this approach, we used the GIS-
based boundary shapefile to detect and recognize a user’s
daily activity/trip. For this analysis we used the boundary
shapefile from open street map, which is readily available
on the Web. ArcPy code in the Python language environ-
ment was scripted for reverse geocoding purposes
through using an ‘‘identity analysis tool’’ to retrieve the
spatial boundary/address information from GPS points.
Each of the GPS points in the user’s trajectory returned
the location information/address, which includes the
mailing address, and later on these mailing addresses
were aggregated to get the duration of each activity or
trip. We also tested dwelling time as 5, 8, and 10 min to
keep consistent analysis with other approaches.

The original GPS points in those trajectories were
very noisy because of the density of high-rise buildings

and street trees, which caused error in capturing accurate
location. In this GIS-based method, we used the Kalman
Filter to smooth the GPS data and further applied a 10
ft (3 m) buffer for polygon and line features to incorpo-
rate the outlier points. Table 1 shows the steps that were
used in the GIS-based approach to predict the user activ-
ity and trip information.

According to Table 1, a total of 15 GPS points is
pulled out of a user’s travel trajectory. We used the
reverse geocoding and obtained the mailing address (m)
against each GPS point (p) for a specific time occurrence
(t). If the spatial points for the user are identified inside
the similar boundary (e.g., home, school, market, etc.)
for more than the specific dwelling time, it is defined as
an activity by the GIS-based approach. Similar mailing
addresses are stored together, and the duration of the
activity is finally calculated by observing the first and
last point of any specific boundary feature. For example,
GPS points ranging from p1 to p5 are observed as inside
the similar boundary/address (m1) for more than the spe-
cific dwelling time, therefore the event is considered as
an activity with the duration between t1 to t5. On the
contrary, if the spatial points for the user are identified
in the address location for less than the specific dwelling
time, it is defined as a trip by the GIS-based approach.
The duration of the trip is finally calculated by observing
the first and last point of those different boundary fea-
tures. For example, GPS points of p6, p7, p8, and p9 are

Figure 2. Geohash clustering example.
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observed as instances that visit different boundaries/
addresses for less than the specific dwelling time; there-
fore, the event is considered as a trip with the duration
between t6 to t9. By following the above-mentioned steps,
the activity/trip classifier aggregated all durations and
generated the final outcome of activity or trip classifica-
tion based on the GIS-based approach.

Combined Geohash–GIS Approach. The Combined Geohash–
GIS approach was developed for this study by integrating
the GIS-based and Geohash Clustering approaches. An
algorithm was developed by combining the two approaches
to achieve the best outcome for activity/trip detection. A
schematic diagram for the combined approach is shown in
Figure 3.

Table 1. Example of User Activity/Trip Recognition Based on GIS-Based Approach

GPS trajectory point (p) Time of occurrence (t) Mailing address (m) Output/Decision obtained from GIS-based approach

p1 t1 m1

Activity
(Stays inside same boundary for a specific dwell time)

Duration from t1 to t5

p2 t2 m1

p3 t3 m1

p4 t4 m1

p5 t5 m1

p6 t6 m2 Trip
Trip

Duration from t6 to t9

p7 t7 m3 Trip

p8 t8 m4 Trip

p9 t9 m5 Trip

p10 t10 m6

Activity
(Stays inside same boundary for a specific dwell time)

Duration from t10 to t15

p11 t11 m6

p12 t12 m6

p13 t13 m6

p14 t14 m6

p15 t15 m6

Note: GIS = geographic information system; GPS = global positioning system; orange shading = same mailing addresses; other colors = different mailing

addresses.

Figure 3. Schematic diagram for Combined Geohash and GIS-based approaches.
Note: GIS = geographic information system.
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Geohash alone could not explain the internal activity/
trip analysis within each cluster if the Geohash precision
level is too big; consecutively, it generates multiple
sub-sections for single trip/activity if minimal Geohash
precision level is considered for analysis. Further, the
GIS-based approach was not flexible enough to incorpo-
rate all of the points into the boundary shapefile because
of the GPS data outliers. Therefore, the combined
approach was developed to overcome these problems. A
two-stage algorithm was developed to run this combined
approach. For the first stage, a Geohash clustering algo-
rithm was developed based on the approach methodol-
ogy described. We used Geohash precision level-6 to
hash the entire study area. This was followed by running
Geohash precision level-7 in each block of level-6 to
identify and check the inner activities among them. Once
we identified the internal activities, the second stage of
the algorithm was initiated by applying the GIS-based
approach inside each internal hashed activity. In this stage,
a reverse geocoding algorithm was applied with shapefile
(e.g., object boundary, line features, etc.) information to
accurately identify the user activity or trip information. By
applying this combined approach, we were able to detect
the inner activities/trips with the correct precision level, as
well as validate the activity/trip by applying GIS-based
boundary shapefiles. We were also able to reduce the out-
lier effect as Geohash considered those outliers by cluster
aggregation at the final stage. Thus, the combined
approach worked perfectly by minimizing the errors to
identify the user activity/trip accurately.

Sample Dataset

For the testing dataset, we randomly collected 90 sam-
ples (90 different days/dates of user activity, sequentially
as trip–activity–trip–activity–trip, etc.) from all users for
the study period of 12 months. The testing dataset con-
tained about 50,000 GPS data records. We considered
three different testing scenarios based on specified toler-
ance levels, including simple, moderate, and critical test-
ing, to identify trip only, activity only, and sequential
activity–trip recognition analysis. From our sample data,
we randomly collected 20% for simple testing, 30% for
moderate testing, and 50% for critical testing. The stan-
dard and tolerance levels that were considered to identify
the accuracy of activity/trip recognition based on three
different testing scenarios are as below:

� Simple testing with 99.7% confidence bounds (tol-
erance range =6 3E from true mean value)

� Moderate testing with 95% confidence bounds
(tolerance range =6 1.96E from true mean value)

� Critical testing with 68.3% confidence bounds
(tolerance range = 6E from true mean value)

where E= s
=N .. s is for standard deviation and N is

sample size.
The true dataset was prepared based on the actual

duration of activities and trips performed by users. The
users’ feedback data together with GPS tracking logs
were displayed and carefully observed in a GIS map to
identify the true data. The activity or trip duration usu-
ally varied because of the user’s behavioral pattern for
different activity types, which is somewhat problematic
for calculating true mean value for the observed dataset.
For example, in relation to mean value of trip duration,
some of the trips were very long (e.g., 1 h or 2 h) and
some were very short (e.g., 10–15 min). So, it was inap-
propriate to calculate the mean value by combining those
long and short trips, which would make our results inac-
curate. Therefore, we sorted the sample data with similar
types of duration times and considered some group cri-
teria (e.g., less than 15 min, 15–30 min, 31–45 min, 46–60
min, 61–80 min, more than 80 min, etc.) and calculated
the mean value for that sample group.

The accuracy for a user’s activity/trip recognition was
calculated based on Equation 1 for different scenario i, as
critical, moderate, and simple testing. Here, the accuracy
means that the defined model accurately recognized the
user trip or activity in such a way that the test/observe
value is within 68%, 95%, and 99% confidence bounds
of true mean value for critical testing, moderate testing,
and simple testing, respectively.

Accuracy in activity=trip recognition Aið Þ=
accurately classified data for scenerio i

total data for scenerio i
� 100 ð1Þ

In addition to testing data and accuracy measurement
for activity/trip recognition, we also evaluated the
approaches based on model training and prediction
accuracy for the whole dataset. For training accuracy,
we checked the misclassification error rate (MER) and
calculated the accuracy based on Equation 2. The mis-
classification error rate was calculated to check whether
the model accurately classifies the trip as trip, and activ-
ity as activity, or vice versa.

Model Training Accuracy,Atraining= 1�MERð Þ�100

ð2Þ

A comparison of different approaches was shown
based on model prediction accuracy. The prediction
accuracy was checked based on Equation 3 by calculat-
ing mean absolute percentage error (MAPE) through
observing the absolute differences between the actual
and predicted user activity duration.

Model Prediction Accuracy,Aprediction = 1�MAPE ð3Þ

where
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MAPE=
1

N

XN

i= 1

observed activity/trip duration - predicted activity/trip duration

observed activity/trip duration

� �

�100 ð4Þ

where N is the total number of observations:
The model was validated based on the ground truth

data, which was obtained by projecting the captured
GPS trajectories of a travel itinerary on a heatmap using
ArcGIS software. A high concentration of points in a
location represents an activity, whereas the continuous
discrete points represent a trip with a scattered pattern.
Once the GPS travel trajectories are displayed in a GIS
map, we verified the locations of the points to recognize
the event, whether it is an activity or trip. We documen-
ted all of the events for the entire travel trajectory and
stored them as ground truth data. In addition, we calcu-
lated the duration, start and end time for each activity/
trip from the heatmap. After that, the model accuracy
was calculated by comparing the output of the three
approaches in respect to ground truth data.

Analysis and Numerical Results

The researchers analyzed the individual approach out-
put, as well as the comparison between the three pro-
posed approaches. We developed 15 different models
based on different dwell times for the three approaches
and analyzed the accuracy for user activity/trip recogni-
tion. We used dwell times of 5 min, 8 min, and 10 min to

recognize user activity/trip for this research, as previ-
ously described.

Geohash Clustering Approach

Three different Geohash levels were applied for each of
the dwell times based on GPS log data to predict the
activity/trip duration. As a result, we developed nine
individual models combining three Geohash character lev-
els (character sizes 5, 6, and 7) for three different dwell times
(5 min, 8 min, and 10 min). We computed the confusion
matrix based on the output for each of the nine models to
identify the misclassification between trip and activity. The
confusion matrix showed the accuracy as to whether the
predicted activity is actually an activity, or the predicted trip
is actually a trip for the specific model. For example, in rela-
tion to considering the model of Geohash-5 with Dwell-5

min,
activity trip

activity 123 11

trip 52 102

0
@

1
A, the model accurately

classified the activity as activity and trip as trip with an
accuracy of 78.1%.

From Table 2, the Geohash-6 and Geohash-7 cluster-
ing showed better accuracy in comparison to the
Geohash-5 clustering. The Geohash-5 clustering did not
deliver a good outcome, as it covered a larger block of
geographical area to cluster the GPS data where some of
the trips/activities were overlooked and misclassified.
The best accuracy (89.23%) was observed for the
Geohash-6 clustering model with a dwell time 5 min.

Accuracy was tested for activity only, trip only, and
sequential activity/trip recognition based on different

Table 2. Accuracy in Activity/Trip Recognition for Geohash Clustering Approach

Activity/trip recognition accuracy (percentage)

Geohash-5 Geohash-6 Geohash-7

Dwell
5 min

Dwell
8 min

Dwell
10 min

Dwell
5 min

Dwell
8 min

Dwell
10 min

Dwell
5 min

Dwell
8 min

Dwell
10 min

Model accuracy (Atraining) 78.11 77.71 78.74 89.23 85.71 83.63 80.91 80.92 77.08

Accuracy (Ai) of different testing scenarios based on sample dataset

Critical testing
Sequential activity–trip 34.62 38.46 37.18 46.15 38.46 33.33 20.51 17.95 16.67
Activity 53.85 46.15 43.59 51.28 43.59 41.03 17.95 15.38 12.82
Trip 15.38 30.77 30.77 41.03 33.33 25.64 23.08 20.51 20.51

Moderate testing
Sequential activity–trip 50.68 52.05 50.68 57.53 56.16 49.32 52.05 50.68 43.84
Activity 69.70 69.70 63.64 60.61 63.64 51.52 51.52 48.48 45.45
Trip 33.33 35.90 38.46 53.85 48.72 46.15 53.85 53.85 43.59

Simple testing
Sequential activity–trip 75.18 75.64 73.08 80.77 75.64 75.64 67.95 67.95 67.95
Activity 73.77 73.77 73.77 77.05 75.41 77.05 65.57 65.57 65.57
Trip 76.32 75.00 72.37 80.26 75.00 75.00 68.42 68.42 68.42
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character levels of Geohash clustering along with differ-
ent dwell times. Table 2 shows the outcome of those nine
different models based on different testing scenarios.
Overall, Geohash-6 with dwell time 5 min showed the best
result with about 50% accuracy for critical testing, 60%
accuracy for moderate testing, and 80% accuracy for sim-
ple testing. As the critical testing (68% confidence interval
from mean value) considered a narrow interval from mean
value, it showed less accuracy in activity/trip recognition
in comparison with other testing scenarios. It is evident
from Table 2 that activity recognition performed good
accuracy compared with trip recognition for all testing sce-
narios. Therefore, we could deduce that the Geohash-6
clustering with dwell time 5 min recognized the user activ-
ity successfully, with more than 80% accuracy with a 99%
probability that the true value lies within the range of pre-
dicted values with three standard deviations.

GIS-Based Approach

We developed three different models to recognize activ-
ity/trip by applying the GIS-based approach considering
5 min, 8 min, and 10 min dwell times. Table 3 shows
model accuracy (Atraining) based on the misclassification
error rate of training data. The GIS-based model with
dwell time 5 min showed good accuracy (70.41%) in
comparison with other GIS-based models. In an overall
comparison, the classification accuracy was lower for
GIS-based models in comparison with other models
based on the Geohash clustering approach.

Likewise, for the GIS-based approach, the outcome
accuracy was tested for the three different GIS-based
models by applying different testing scenarios for activity

only, trip only, and sequential activity/trip recognition.
From Table 3, dwell time 10 min showed good accuracy
to recognize user activity/trip for critical and simple test-
ing in comparison with other dwell times. However, dwell
time 5 min showed better accuracy for trip recognition
based on simple testing. In general, dwell time 10 min
worked better to identify activity/trip based on the GIS-
based approach with an overall accuracy of about 50%
with a 99% probability that the true value lies within the
range of predicted values, which was less than the accu-
racy of the Geohash clustering approach.

Combined GIS and Geohash Approach

Three different models were developed based on a com-
bined approach by using different dwell times. Table 4
shows the accuracy based on a confusion matrix, where
a very good accuracy (above 90%) was observed to iden-
tify trip as a trip and activity as an activity based on all
the different models of a combined approach, which was
higher than previous models (based on the Geohash clus-
tering and GIS approach).

From Table 4, all of the models based on the combined
approach showed very good accuracy to recognize activity
only, trip only, and sequential activity/trip for all testing
scenarios in comparison with other approaches (Geohash
clustering and GIS-based approach). Among them, dwell
time 5 min showed the best accuracy (above 90%) for crit-
ical, moderate, and simple testing. On average, there is a
99% probability that the combined approach with dwell
time 5 min could recognize the user activity successfully
with 95% accuracy that the true value lies within the range
of predicted values with three standard deviations.

Table 3. Accuracy in Activity/Trip Recognition for GIS-Based Approach

Activity/trip recognition accuracy (percentage)

Dwell-5 min Dwell-8 min Dwell-10 min

Model accuracy ( Atraining) 70.41 69.72 70.15

Accuracy ( Ai) of different testing scenarios based on sample dataset

Critical testing
Sequential activity–trip 26.92 33.33 34.62
Activity 35.90 38.46 41.03
Trip 17.95 28.21 28.21

Moderate testing
Sequential activity–trip 26.03 31.51 35.62
Activity 42.42 48.48 51.52
Trip 10.26 15.38 20.51

Simple testing
Sequential activity–trip 63.50 51.28 51.28
Activity 60.66 52.46 54.10
Trip 65.79 51.32 51.32

Note: GIS = geographic information system.
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Discussion and Comparison of the
Different Approaches

In this section, we talk about the predicted values (dura-
tion in minutes) of user activity/trip based on different
approaches. Different models based on the Geohash-6
clustering approach, GIS-based and Combined Geohash–
GIS approach were compared and analyzed for different
dwell time scenarios. Geohash-6 was chosen in this com-
parison as it showed better accuracy from previous analy-
ses of other Geohash precision levels in this study. As
dwell time was considered as a key feature to identify the
activity/trip in this analysis, we considered the model
comparison based on this parameter.

We compared the predicted sequential activity–trip
duration values with true duration values by developing
a scatter plot diagram in relation to showing the relation-
ship based on linear trend lines (Figure 4). Based on
dwell time 5 min, the data relationship between true and
predicted value was positive and strong with r-square
value of above 0.8 for all of the approaches. Especially,
the combined approach showed good accuracy with
higher r-square value (above 0.9). Therefore, we can con-
clude that the combined approach explained more than
90% of data variability of the predicted activity–trip
duration around its true mean value.

The MAPE was computed to show the actual devia-
tion of predicted activity/trip duration from the true
value. MAPE values are shown in Figure 5 for activity
only, trip only, and sequential activity–trip accuracy
based on different models for different approaches. All
of the models based on the GIS-based approach

Table 4. Accuracy in Activity/Trip Recognition for Combined Geohash–GIS Approach.

Activity/trip recognition accuracy (percentage)

Dwell-5 min Dwell-8 min Dwell-10 min

Model accuracy ( Atraining) 94.10 92.12 92.01

Accuracy ( Ai) of different testing scenarios based on sample dataset

Critical testing
Sequential activity–trip 93.59 93.59 89.74
Activity 87.18 87.18 79.49
Trip 100.0 100.0 100.0

Moderate testing
Sequential activity–trip 91.78 87.67 89.04
Activity 81.82 72.73 75.76
Trip 100.0 100.0 100.0

Simple testing
Sequential activity–trip 91.97 91.44 91.44
Activity 83.61 72.13 77.05
Trip 98.68 98.68 98.68

Note: GIS = geographic information system.

Figure 4. Accuracy comparisons for different approaches.
Note: GIS = geographic information system.
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(considering 5 min, 8 min, and 10 min dwell time)
showed poor accuracy for predicting the activity/trip
duration. The Geohash-6 clustering showed better accu-
racy in sequential activity–trip duration in comparison
with GIS-based methods. However, the combined
approach with dwell time 5 min showed the best accu-
racy, where the MAPE values were less than 15%.

This research also compared the accuracy in user
activity/trip recognition by developing individual
Receiver Operating Characteristics (ROC) for different
models on different approaches. The diagnostic test
based on ROC curves are shown in Figure 6, where the
relationship between sensitivity and false-positive rate are
explained for predicted activity/trip values by different
models. The area under curve (AUC) was calculated and
showed based on different dwell times for different
approaches. The combined approach with dwell time 5
min showed the highest AUC value with 0.878. However,
for the GIS-based approach, the ROC curve was under
the curve, which shows very poor accuracy. The potential
reason behind this poor accuracy could be the false pre-
diction of an activity instead of a trip and vice versa for
most of the time, as GPS points fluctuate in and out for
the same location within an error range of 100 m (the
phone’s GPS accuracy). Because of the fluctuation of the

GPS data, the mailing addresses of all points might not
be the same, which leads to false results based on the GIS
method. Inaccurate GPS points or outliers could be the
primary reason behind the poor accuracy of the GIS
approach. The outlier/inaccurate GPS points affect the
reverse geocoding method (which is applied to retrieve
the spatial boundary/mailing address information),
which ends up retrieving a wrong mailing address, and
leads to the misclassification of activity/trip information.

The Geohash approach shows the best computation
time compared with the other approaches as this
approach does not require any third-party database on
the internet. The average calculation time for the
Geohash approach is around 2 s for 100 GPS points. The
GIS approach calculation requires an API call to a third-
party database to obtain the reverse geocode and, there-
fore, the average calculation time for the GIS approach is
70 s for 100 points. The Combined Geohash–GIS
approach is a mixture between both Geohash and GIS
approaches. This approach requires a third-party API
call for a portion of the points, and the average calcula-
tion time is 20 s. The rank of the three approaches in rela-
tion to calculation time is as follows: Geohash would be
the quickest, then the Combined Geohash–GIS
approach, then the GIS approach.

Figure 5. Accuracy in activity/trip recognition based on MAPE.
Note: GIS = geographic information system; MAPE = mean absolute percentage error.
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Figure 6. Accuracy comparisons based on ROC curves.
Note: GIS = geographic information system; AUC = area under curve; ROC = receiver operating characteristics.
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Summary and Concluding Remarks

This research studied three different approaches that
were developed and applied for user activity and trip rec-
ognition based on GPS log data. Based on Geohash clus-
tering analysis, Geohash precision level-6 with dwell time
5 min showed good accuracy for user activity/trip detec-
tion. Based on the GIS-based approach, dwell time 10
min worked better rather than 5 min, as it was affected
with data outlier problems. However, the best accuracy
was observed for the Combined Geohash–GIS approach
with dwell time 5 min. Therefore, we can conclude that
our proposed combined approach could significantly
enhance the efficiency and accuracy of GPS travel survey
by correctly recognizing user activity and trip patterns.
This proposed combined approach could serve as a foun-
dation for a future model system of full-scale travel infor-
mation identification with GPS data. The accuracy from
the combined approach could contribute to the modeling
and analyzing of travel behavior, and is readily applica-
ble to a wide range of transportation practices by consid-
ering comprehensive travel information.

As a drawback of this study, the application could not
collect IOS users’ data. Therefore, the users’ participa-
tion was less than expected. Moreover, we did not con-
sider the trip types and activity categories in this work.
In future research, we will focus on different trip and
activity types together with their purposes in addition to
activity/trip pattern recognition by applying the pro-
posed Combined Geohash–GIS approach.

The technology of Big Data leads to new thought-
provoking paradigms about scientific research, which
could be useful in detecting transportation users’ behavior
associated with the built-up environment of cities. To man-
age and analyze the Big Data related to GPS trajectories
of a user’s activity/trip, this study’s proposed combined
approach could be considered as an efficient approach for
accurately recognizing the user’s pattern and behavior.
The proposed approach is easy to replicate and could con-
tribute to transportation and city planning research with a
broader perspective by replacing the traditional survey
method with automatic recognition of user travel patterns.
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